Mitogen-Activated Protein Kinase Signaling Cascade in Rat Neonatal Cardiac Myocytes Sphingosylphosphorylcholine Induces a Hypertrophic Growth Response Through the
نویسندگان
چکیده
The sphingolipid metabolites, sphingosine (SPH), SPH 1-phosphate (S1P), and sphingosylphosphorylcholine (SPC), can act as intracellular as well as extracellular signaling molecules. These compounds have been implicated in the regulation of cell growth, differentiation, and programmed cell death in nonmyocytes, but the effects of sphingolipid metabolites in cardiac myocytes are not known. Cultured neonatal rat cardiac myocytes were stimulated with SPH (1 to 10 mmol/L), S1P (1 to 10 mmol/L), or SPC (0.1 to 10 mmol/L) for 24 hours to determine the effects of sphingolipid metabolites on the rates of protein synthesis and degradation. Stimulation with SPC led to an increase in the total amount of protein, an accelerated rate of total protein synthesis, and a decrease in protein degradation in a dose-dependent manner. However, S1P had little effect and SPH had no effect on total protein synthesis. In addition, stimulation with SPC led to a 1.4-fold increase in myocardial cell size and enhanced atrial natriuretic factor gene expression. Pretreatment of the cardiac myocytes with pertussis toxin or PD98059 attenuated the SPC-induced hypertrophic growth response. Further, stimulation with SPC increased phosphorylation of mitogen-activated protein kinase (MAPK) and stimulated MAPK enzyme activity. Finally, endothelin-1 stimulated the generation of SPC in cardiac myocytes. The observation that SPC induces a hypertrophic growth response in cardiac myocytes suggests that SPC may play a critical role in the development of cardiac hypertrophy. The effects of SPC could be mediated, in part, by activation of a G protein–coupled receptor and a MAPK signaling cascade. (Circ Res. 1999;85:1000-1008.)
منابع مشابه
Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes.
The sphingolipid metabolites, sphingosine (SPH), SPH 1-phosphate (S1P), and sphingosylphosphorylcholine (SPC), can act as intracellular as well as extracellular signaling molecules. These compounds have been implicated in the regulation of cell growth, differentiation, and programmed cell death in nonmyocytes, but the effects of sphingolipid metabolites in cardiac myocytes are not known. Cultur...
متن کاملMechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes.
We have previously shown that stretching cardiac myocytes evokes activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and 90-kD ribosomal S6 kinase (p90rsk). To clarify the signal transduction pathways from external mechanical stress to nuclear gene expression in stretch-induced cardiac hypertrophy, we have elucidated protein kinase cascade of phosphorylation by exam...
متن کاملPGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation.
Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase an...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملMultiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases.
We showed before that in neonatal rat cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophic growth and transcriptional regulations of genes that are markers of cardiac hypertrophy. In view of the suggested roles of Ras and p42/44 mitogen-activated protein kinases (MAPKs) as key mediators of cardiac hypertrophy, the aim of this work was to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999